Sections
Accueil UNamur > Agenda > Défense de thèse de doctorat en Sciences mathématiques - Nicolas HERMAN
événement

Défense de thèse de doctorat en Sciences mathématiques - Nicolas HERMAN

Probing the primordial Universe by detecting high-frequency gravitational waves with resonant electromagnetic cavities

Catégorie : défense de thèse
Date : 27/01/2023 16:00 - 27/01/2023 19:00
Lieu : PA02
Orateur(s) : Nicolas HERMAN
Organisateur(s) : André FÜZFA

Jury

  • Prof. Alexandre MAUROY (département de mathématique, UNamur), président
  • Prof. André FÜZFA (département de mathématique, UNamur), promoteur et secrétaire
  • Prof. Sébastien CLESSE (Université Libre de Bruxelles)
  • Dr Aldo EJLLI (School of Physics and Astronomy, Cardiff University)
  • Dr Michaël LOBET (département de physique, UNamur)
  • Prof. Massimiliano RINALDI (Department of Physics, University of Trento)
  • Prof. Andreas RINGWALD (Theory Group, Deutsches Elektronen-Synchrotron)

 

Abstract

The first detection of gravitational waves in 2015 by LIGO/VIRGO with interferometers is one of the most wonderful scientific achievements in this century, leading to a brand new astronomy era. The frequency content of such waves is at the order of the hertz, but there are several interests in much higher frequencies, above megahertz. Interferometers can not detect such high frequency content. In this thesis we are going to study high-frequency gravitational wave possible detection using electromagnetic fields, through the inverse Gertsenshtein effect. Our detector is a patented cylindrical electromagnetic cavity immersed in an intense external magnetic field. We study how we could detect two high-frequency sources that are witnesses of the early Universe, which are primordial black holes and stochastic gravitational wave background. We will study analytically and numerically the possible detection of these signals, showing how we can get information about those primordial Universe objects.

Link

https://teams.microsoft.com/l/meetup-join/19%3ameeting_YTA0YmNkZDEtOTNlOC00NzhiLWI4YTgtMjRjYzA3NzM3MjY3%40thread.v2/0?context=%7b%22Tid%22%3a%225f31c5b4-f2e8-4772-8dd6-f268037b1eca%22%2c%22Oid%22%3a%22ac435c71-a838-40d2-a254-269b054ecbda%22%7d

Télecharger : vCal